LA LEY DE LOS RENDIMIENTOS MARGINALES DECRECIENTES

se refiere a la cantidad de producto adicional que se obtiene cuando se añaden sucesivamente unidades adicionales iguales de un factor variable a una cantidad fija de uno o varios factores. Según esta ley, a partir de cierto nivel de empleo, se obtienen cantidades de producto sucesivamente menores al añadir dosis iguales de un factor variable, a una cantidad fija de un factor.


En economía, la ley de los rendimientos decrecientes (o ley de proporciones variables,​ principio de productividad marginal decreciente​ o retornos marginales decrecientes​) es la disminución del ingreso marginal de la producción a medida que se añade un factor productivo, manteniendo los otros constantes. Afirma que en todos los procesos productivos, añadir más de un factor productivo mientras se mantienen los otros constantes (ceteris paribus) dará progresivamente menores incrementos en la producción por unidad.

Es un principio fundamental de la economía​ y tiene un rol principal en la teoría neoclásica de la producción.
La ley de rendimientos decrecientes fue estudiada por David Ricardo .

David Ricardo (Londres18 de abril de 1772,11 de julio de 1823) fue un economista inglés de origen judío sefardí-portugués, miembro de la corriente de pensamiento clásico económico y uno de los más influyentes junto a Adam Smith y Thomas Malthus. Continuó y profundizó el análisis del circuito de producción de la república, cuyo origen se remonta a Quesnay y al fisiocratismo.
También fue un hombre de negocios, especulador exitoso, agente de cambio y diputado, logrado amasar una considerable fortuna.


Observa el grafico que tienes al final de este párrafo. Al principio el empleo de una cantidad mayor de factores de producción produce rendimientos a escala crecientes, pero llega un momento en que se produce un punto de inflexión, aunque el empleo de un factor de producción adicional sigue produciendo rendimientos positivos, sin embargo estos rendimientos son inferiores a los que aportó el factor anterior. Estamos en el punto de inflexión. En el gráfico será el punto donde la función pasa de un tipo de concavidad al otro.
Llegará un punto donde la relación entre la producción obtenida y el factor empleado sea óptima. Es el óptimo de la producción y en la grafica lo hemos representado en la abcisa en el punto l.
El máximo de la producción es el punto más alto de la función. A partir de ahí la producción se estanca o disminuye.
                               



Comentarios